
Model-driven Development of Safety Architectures
Ewen Denney, Ganesh Pai, and Iain Whiteside

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney, ganesh.pai, iain.whiteside}@nasa.gov

Abstract—We describe the use of model-driven development
for safety assurance of a pioneering NASA flight operation
involving a fleet of small unmanned aircraft systems (sUAS)
flying beyond visual line of sight. The central idea is to develop
a safety architecture that provides the basis for risk assessment
and visualization within a safety case, the formal justification of
acceptable safety required by the aviation regulatory authority.
A safety architecture is composed from a collection of bow tie

diagrams (BTDs), a practical approach to manage safety risk
by linking the identified hazards to the appropriate mitigation
measures. The safety justification for a given unmanned aircraft
system (UAS) operation can have many related BTDs. In practice,
however, each BTD is independently developed, which poses
challenges with respect to incremental development, maintaining
consistency across different safety artifacts when changes occur,
and in extracting and presenting stakeholder specific information
relevant for decision making. We show how a safety architecture
reconciles the various BTDs of a system, and, collectively, provide
an overarching picture of system safety, by considering them
as views of a unified model. We also show how it enables
model-driven development of BTDs, replete with validations,
transformations, and a range of views. Our approach, which we
have implemented in our toolset, AdvoCATE, is illustrated with a
running example drawn from a real UAS safety case. The models
and some of the innovations described here were instrumental
in successfully obtaining regulatory flight approval.

Index Terms—Bow tie diagram, Model-driven development,
Safety architecture, Safety case, Transformation, Unmanned
aircraft systems, Views

I. INTRODUCTION

Currently small unmanned aircraft systems (sUAS) (popu-
larly referred to as drones) are primarily only permitted to fly
within visual line of sight of their pilots and under specific
operational restrictions, e.g., over unpopulated areas, and at
low altitudes, to ensure safety of third parties in the air and
on the ground [1].

A capability that will substantially expand the kinds of
operations that can be conducted with sUAS—e.g., package
delivery, reconnaissance and surveillance, inspection of tall
and/or remote structures such as pipelines, power lines, etc.—
involves so-called beyond visual line of sight (BVLOS) flight,
where unmanned aircraft (UAs) fly substantially farther than
the visual range of their pilots, and/or their visual observers.
These are an entirely new class of operations that are cur-
rently the focus of intense industrial interest. However, they
pose greater safety risk, especially when conducted in denser
airspace in the presence of non-participating air traffic, and
over populated areas. Conducting BVLOS operations currently
requires approval from the Federal Aviation Administration

(FAA), the US national civil aviation authority, which is
granted on sufficiently justifying the safety of the proposed
operations through a safety case.

In short, this is a type of safety risk management artifact
addressing, at a minimum, a) the details about the system and
its environment, including pre-existing procedures, operations,
roles, and responsibilities; b) the intended changes to the
system, e.g., the introduction of new technology, equipment,
and procedures; c) information on UAS capabilities and air-
worthiness1; d) hazard and risk analyses, including details of
the assumptions made, the criteria for categorizing hazards,
the initial and residual risk, hazard mitigations, risk treatment
and safety requirements, and hazard tracking; and e) details
of safety risk management planning.

An important component of the safety case is a justification
for how the specified hazard mitigation measures and safety
requirements are expected to reduce risk to an acceptable
level. A practical approach to present some key parts of
this safety justification employs bow tie diagrams (BTDs),
which elaborate the safety-relevant scenarios and the suite
of measures used to manage safety risk. BTDs have been
used for safety risk management in the context of both civil
aviation [2] as well as UAS [3]. Creating an aviation safety
case (and especially the required safety justification) involves
substantial engineering effort [4], [6], [7], [8], and we believe
model-driven development can play a useful role.

Recently, we created a safety case to enable BVLOS flight
trials with a fleet of sUAS, as part of the effort to engineer
an air-traffic management system specifically for low-altitude
sUAS operations [9]. The safety case harnessed a diversity
of engineering artifacts, analyses, and evidence, along with
BTDs to provide the justification of risk reduction and, in
turn, operational safety. Using the BTDs and some of the
innovations to be described subsequently in this paper, we
conveyed, to the FAA, the overall picture of safety risk
together with the measures that would be undertaken to
ensure the intended operations would be safely conducted. The
safety case also employed structured argumentation to provide
assurance of functional safety for the required surveillance and
avoidance capabilities [4], [6]. This safety case successfully
underwent regulatory scrutiny, and served as the basis for
flight approval. So far as we are aware, the safety case and
the associated operations are the first of their kind—i.e., true
BVLOS operations in non-segregated airspace over (sparsely)

1Fitness of an aircraft system to safely initiate, sustain, and terminate flight.

1

https://ntrs.nasa.gov/search.jsp?R=20170011559 2019-04-29T09:51:59+00:00Z

populated land within the US, with multiple sUAS—to have
been granted regulatory approval.

As part of this effort, we encountered a number of practical
challenges with creating and using BTDs, as they may be
typically used. In brief, those challenges pertain to incremental
development, maintaining consistency across both different
BTDs and other safety artifacts when changes occur, determin-
ing that the safety system represented by the BTDs adequately
reduces risk, and extracting and presenting stakeholder-specific
information relevant for safety-related decision making.

This paper describes our novel solutions to address these
challenges, and our contributions include:
a) a refinement of safety architectures (SA)—introduced in

our earlier work [4] and subsequently formalized [5]—
that reconciles a collection of BTDs within one instance
of a unifying model where BTDs emerge naturally as
substructures;

b) the specification of a series of validations, views, and trans-
formations that enable model-driven development (MDD)
of SA. We used the SA and some of the views to extract and
provide specific assurance information, e.g., an assessment
of residual risk, which was required for regulatory scrutiny;

c) enhancing the methodology for using BTDs during safety
case development. To our knowledge, the views and trans-
formations defined here are new innovations, not otherwise
part of how BTDs have been traditionally used. As such,
we believe they can also be used in other domains where
safety assurance is required; and

d) tool support for the preceding contributions, in our toolset
for assurance case automation, AdvoCATE [10].

II. BACKGROUND

We first give an introduction to BTDs, providing a context
for their use during the safety analysis and assurance process.
Then we give excerpts of BTDs from the safety case we
created as the running example that motivates this work and il-
lustrates our novel solution. Finally, based on this example, we
elaborate some of the practical challenges that we encountered
in creating and using BTDs to provide safety justification, as
part of our wider task of creating a safety case for BVLOS
sUAS operations.

A. Safety Analysis and Bow Tie Diagrams
The safety process begins, in general, with hazard identifica-

tion based upon a particular concept of operations (CONOPS),
i.e., a description of the system, its boundaries, and a charac-
terization of the intended usage. The resulting safety hazards
represent the activities, conditions, or the operational contexts
that pose the potential for harm.

Then, we establish hazard causes, and (worst-case cred-
ible) consequences, after which we identify and elaborate
pre-existing mitigations towards determining an initial risk
level, i.e., a preliminary assessment of the combination of
the (expected) likelihood of occurrence of a harmful event,
and its associated severity. That, in turn, establishes whether
additional mitigation measures are required. If required, and

once new mitigations have been determined, a subsequent risk
assessment is undertaken to determine a residual risk level,
i.e., the remaining risk after applying all mitigation measures
to reduce inherent risk. This overall process is iterative until
a residual risk level has been achieved that is considered
acceptable (and, therefore, safe) [11]. These activities also
form part of the core process for developing a safety case
in the context of sUAS [4].

There are mappings from the outcomes of the safety process
into the elements of a BTD. As shown in Fig. 1, a BTD
provides a means to visualize the links between the identified
hazards, and their causes, consequences, and the required
mitigation measures. From the BTD perspective, a hazard
captures an operational context, while the top event represents
the state where there is a loss of control over the hazard, or a
hazard release. In Fig. 1, the hazard identified from our safety
case is H1: Airborne UAs operating BVLOS operations within
the operating range (OR). Here, the OR is a defined volume
of airspace within which BVLOS sUAS operations will occur.
This is an inherently hazardous activity since the possibility
of colliding with other (manned or unmanned) air traffic poses
the potential for harm. A corresponding top event is a loss of
safe separation between the UA and the manned aircraft (e.g.,
E4, Fig. 1). A consequence (e.g., E7, Fig. 1) is a harmful event
such as a midair collision (MAC), whereas a threat represents
a potential cause of a top event, e.g., an airborne intruder (E3,
Fig. 1).

Barriers represent (pre-existing or new) risk mitigation
measures. We can further refine barriers into their constituent
controls2, i.e., lower-level actions/capabilities that collectively
implement the safety function that the barrier provides. From
Fig. 1, it is evident that we organize barriers such that
their combination works to i) prevent the progression of the
event chains leading from hazard causes to the events where
there is a dangerous loss of control over the system, i.e.,
hazard release; and ii) recover from hazard release to prevent
further progression of the event chain from reaching harmful
consequences. Thus, barriers appearing to the left of the top
event are meant for prevention, i.e., to reduce the likelihood of
occurrence of the top event. Alternatively, the purpose of the
barriers to the right of the top event is recovery, i.e., to reduce
the risk of the consequence after the top event has occurred.

The BTD of Fig. 1 gives specific prevention and recovery
barriers3 that were pertinent to our safety case, e.g., an
independent flight abort capability, and piloting safety actions,
respectively. Also, in Fig. 1 we elaborate the specific, relevant
control(s) below a given barrier. For instance, notifying air
traffic control (ATC) and broadcasting on the common traffic
advisory frequency (CTAF) are amongst the many controls
comprising the emergency procedures (prevention) barrier.
Notice that we can use the same barrier for both prevention

2The terms barrier and control are often used interchangeably in the
literature, although we distinguish them here.

3Although representative of the real suite of safety measures being used,
the BTDs in this paper are mainly illustrative and, therefore, do not show all
the barriers.

2

Threat

Threat

Hazard

Consequence

Top
Event

Recovery Barrier

Prevention Barrier
Description of specific
Control used in the barrier

Fig. 1. Excerpt of a BTD from a real safety case illustrating its structure and
key elements (annotated in boldface), as implemented in our tool, AdvoCATE.
This BTD concerns the mitigation of a loss of separation event that could lead
to a midair collision consequence, in the context of specific threats, and UAs
flying BVLOS within a defined operating airspace.

and recovery, but that their constituent controls are different,
e.g., as in the piloting safety actions barrier in Fig. 1. Bar-
riers/controls can be further developed at a second level (not
shown in Fig. 1) into escalation factors and escalation factor
barriers, though we will not consider them in this paper.

In short, BTDs present a visualization of the key concerns
relevant for safety, along with the measures available to reduce
the associated risk. Thus, it is intuitive to see how we can
use BTDs for safety justification within an aviation safety
case. Implicitly, that safety justification can be considered as
providing defense in depth against the identified causes of
specific harmful consequences through the use of independent,
loosely-coupled barriers or, equivalently, layers of protection.

Next, we introduce two additional BTDs from the safety
case we authored. Together with the BTD of Fig. 1, the BTDs
of Fig. 2 and Fig. 3 comprise the running example for the rest
of this paper.

B. Running Example
As overall context for interpreting this example, we first

briefly describe the concept of operations (CONOPS) and the
pertinent safety concerns: the flight operations—which are
meant to simulate some of the real applications indicated in
Section I, whilst testing the capabilities of the UAS traffic
management (UTM) system [9]—involve multiple sUAS op-
erating simultaneously within an operating range (OR), over
a (sparsely) populated, and minimally built-up area. Some of
the UAs operate BVLOS while others operate within line of
sight. Two main hazardous situations are relevant:

H1) UAs that are airborne BVLOS within the OR: this
scenario is hazardous due to the presence of regular air traffic

in the area that operate at a low altitude. That, in turn, poses
the potential for a MAC with a manned aircraft intruding into
the OR. Note that this is exactly the hazard in Fig. 1, and also
in Fig. 2.

H2) So-called non-cooperative, non-participating aircraft4
that are airborne in a traffic pattern outside the OR, but within
the threat volume (TV)5: this hazard is captured in the BTD
of Fig. 3, and the scenario is a specialization of the previous
scenario. It deserves elaboration due to the following reasons:
– aircraft in a traffic pattern indicates the presence of aviation

activity at low altitudes in proximity to the OR, in particular
aircraft that are taking off or landing. Any departure from
the traffic pattern in the direction of the OR is hazardous
owing to the reduced time to react.

– even if aircraft from the traffic pattern do not intrude into
the OR, the possibility of UAs inadvertently exiting from
the OR in the direction of this air traffic also poses a
catastrophic collision hazard.
The BTDs of Figs. 1 and 2 address different top events (E4,

and E3, respectively) for the same hazard (H1). Specifically,
top event E4 of Fig. 1 concerns a loss of safe separation with a
manned intruder aircraft, whereas top event E3 of Fig. 2 con-
cerns an airborne intrusion into the OR by a non-participating
manned aircraft. Notice that event E3 in Fig. 2 is identical
to the threat event E3 in Fig. 1. Moreover, the consequence
event E4 in Fig. 2 (addressing a loss of safe separation) is
identical to the top event E4 in Fig. 1. Indeed, the branch
connecting the two events have the same barriers/controls in
both the BTDs: i.e., avoidance maneuvers, independent flight
abort, and emergency procedures. The BTDs in Figs. 1 and 2
also identify additional threats and specific consequence events
related to hazard H1.

The BTDs of Fig. 2 and Fig. 3 address the same top event
(E3) for different hazards (i.e., H1 and H2, respectively).
Observe that the threat event E2, which pertains to a lack
of sUAS crew situational awareness, is a common threat in
both BTDs. However, each BTD also contains threats and
consequences that are specific to the particular situation that
the hazard represents. For instance, E5, in Fig. 2, and E1, in
Fig. 3 are dissimilar threats for the same top event. Likewise,
the consequence E5 is only relevant in the context of hazard
H1 and therefore only appears in the BTD of Fig. 2.

There is also flexibility in how we can deploy barriers and
controls. For instance, as mentioned earlier, we can use the
same barriers in different BTDs (common event chain). So
also, the same barriers can be used for different threats not
only in different BTDs but also in the same BTD, e.g., the
use of the ground-based surveillance barrier, using radar as a
control, in Fig. 2 and Fig. 3.

Finally, in the BTDs of Figs. 1–3, we annotate barriers with
their integrity, i.e., the likelihood that a barrier is compromised

4That is, third party, manned aircraft not equipped with operating transpon-
ders, due to which they are invisible to ATC radar when operating at a low
altitude, below primary radar range.

5The TV is a volume of airspace larger than, and including the OR, within
which there is a credible likelihood of a MAC.

3

Fig. 2. Excerpt of the BTD to mitigate an airborne intrusion by a manned aircraft into the OR (E3), and eventually prevent either a ground collision of a UA
(E6), or a loss of safe separation with the manned intruder (E4).

Fig. 3. BTD whose top event (E3) is identical to the BTD of Fig. 2, although in the context of a different hazardous situation (H2) for the same operation,
i.e., manned aircraft within a traffic pattern outside the OR that pose a danger if they veer away from the pattern in the direction of sUAS activity.

in a dangerous manner. Barrier integrity is closely related to,
but not the same as barrier reliability, which concerns all
barrier breaches, including those that may not have safety-
relevant implications. Based on an initial estimate of threat
event likelihood and the severity of the worst-case credible
consequence, each BTD provides an assessment of initial and
residual risk. In general, initial risk is the combination of
initial severity and likelihood. Residual risk corrects the initial
estimate reducing either, or both components of risk based on
the barriers used. Then, given the assessment and a traditional
risk acceptance and classification matrix [11], we determine
risk levels. In the BTDs of Figs. 1–3, these are the fields IR
and RR, respectively, for the top event (and IRL, and RRL,
respectively for the consequence). The RRs of an event are
calculated from left to right, based on the RR of its threats
and the barriers between them, using the inclusion-exclusion
principle to compute the risk of the consequent event.

In reality, a safety case contains several unique hazards

and top events each of which have numerous threats, conse-
quences, and several layers of barriers and controls. Intuitively,
this presents a number of practical challenges, which we now
elaborate.

C. Practical Challenges in Using BTDs

As may have been evident from the preceding discussion,
depending on the specific system/operation being considered
for safety analysis, we can identify multiple hazardous sce-
narios, each of which may, in turn, yield multiple top events.
This results in several BTDs—one per specified top event per
identified hazard. In practice, each BTD is typically individ-
ually created, and since there can be inherent relationships
between such BTDs—e.g., through common threats, or the
use of common barriers/controls for multiple threats—creating
each BTD independently presents challenges that pertain to
a) ensuring that the relevant relations between the different
BTDs are captured, and b) maintaining internal consistency.

4

Since the safety process is iterative, each iteration refines
our understanding of issues such as appropriately classifying
events (e.g., into causes, consequences, top events), event
ordering, the relevance and organization of controls/barriers as
well as their respective ordering, changes required to existing
controls, etc. This necessitates an incremental development
of BTDs due to which, again, there is a need to ensure that
updates are both internally consistent, and consistent with the
underpinning safety analysis.

Moreover, the controls and barriers in a BTD have counter-
parts in the containing safety case, as well as in the real safety
system. For example, nominal and off-nominal procedures and
actions to be followed by crew members—which could be
specified across multiple BTDs—can be collected and invoked
in one location in the safety case, and will additionally exist as
actual documents that crew members will reference during the
real mission; likewise for hardware/software implementations
of the functionality specified by a control/barrier, etc. The
challenge of maintaining consistency also extends to these
external artifacts to which the BTDs refer. To an extent,
this can become as safety-critical a concern as the identified
hazards [12].

Whilst creating the safety case for BVLOS sUAS opera-
tions, we became keenly aware of the importance of presenting
stakeholder-specific information as well as the larger con-
text of safety to facilitate better comprehension and decision
making. For example, the regulators were interested in the
overarching picture of how the barriers would be used for
safety and the extent of risk reduction that would be achieved,
sometimes focusing on the details of the controls only for
specific barriers, e.g., radar surveillance. On the other hand,
those stakeholders who are part of the system (as opposed to
those evaluating it) were more concerned with their specific
responsibilities for ensuring safety in operations. Moreover,
particular details relevant for specific stakeholders are, more
often than not, spread across a plurality of BTDs, which
requires a capability not only to extract this information but
also to present it in a form that is relevant for the particular
purpose/stakeholder. In relation to these needs, the collection
of BTDs can be seen as presenting snapshots of how system
safety is being managed, but not the overarching picture.

So far as we are aware, in practice, current methodologies
and/or tools available for creating BTDs, e.g., [13], [14], [15],
[16], [17], [18], do not offer the capabilities to address the
challenges outlined here.

III. SAFETY ARCHITECTURES

Now we introduce and motivate our design of safety ar-
chitectures (SAs). Then, we present the EMF model [19]
underpinning our implementation, which, for assurance, is
based on our formalization of SAs.

A. Design decisions

We will draw from the running example in Section II-B to
illustrate the main design decisions of SAs.

i) We observe from Figs. 2 and 3 that the events, barriers,
and controls in one BTD can be used (selectively or entirely)
in the other, recalling that the two BTDs address the same top
event (E3) for different hazards (H1, and H2, respective), also
permitting hazard-specific events and barriers. For example,
E8 is a threat only relevant for hazard H2, as are the barriers
on that event chain. As such, we consider events, controls,
and barriers to have a separate existence outside the BTDs in
which they occur. We call this global list a safety signature.

ii) We further recall that the BTDs of Figs. 1 and 2 both
concern hazard H1, but address different top events (E4,
and E3, respectively). We additionally note that the event
chain connecting the events E3 and E4 are common to both
BTDs, including the barriers/controls used. Intuitively this
consistency is required since the events in the context of
the same hazard are identical irrespective of where the focus
of risk mitigation lies. In other words, the two BTDs can
be considered as a moving window on a single event chain
and depending on which event is in focus (i.e., considered a
top event), other events can be classified appropriately (i.e.,
as threats, or consequences). In this light, creating BTDs
for hazards can be seen as the process of constructing an
interconnected graph of events and barriers/controls, drawn
from the safety signature. We call this interconnected graph a
Controlled Event Structure (CES). Fig. 4 shows (as a bird’s
eye view) the CES that includes the BTDs of Figs. 1 and 2.

iii) Finally, we observe that the risk assessments that
accompany the BTDs should be mutually consistent. This
necessitates defining an underlying risk assessment model that
takes the CES into account rather than individual BTDs. This
is particularly important when considering the situation where
an event is shared across different hazards, e.g., E3, which is
a top event in the BTDs of Fig. 2 and Fig. 3, since a BTD
specific risk assessment only provides a part of the assessment
of total risk posed. In other words, without considering the
overarching event chain, there is a danger of underestimating
the level of risk posed.

The combination of safety signature and CES for every
hazard is a safety architecture (SA). This approach, where
(traditional) BTDs emerge as projections from an overarching
CES, enables us to automatically pinpoint inconsistencies,
view the structure in novel ways (e.g., show which events
are affected upon a control breach), and to provide automatic
transformations that facilitate incremental BTD development.

Elsewhere [5], we have given a formal definition of SAs,
building on our earlier formalization of BTDs [4]. Briefly,
we assume a safety signature consisting of underlying sets of
events, controls, and barriers. A CES can then be defined as a
labeled directed acyclic graph of events and barriers, subject
to certain structural conditions. Finally, an SA consists of a set
of hazards, and a collection of mutually consistent controlled
event structures, one for each hazard. A BTD can then be seen
as a specific sub-structure of a CES containing the top event
and all connected nodes up to (and including) the first events
on either side. We omit the details here and refer the interested
reader to [5].

5

Fig. 4. Example of a CES including two BTDs of the running example. The heavy dashed line splits the CES such that the upper fragment corresponds to
the BTD of Fig. 2, and the lower section corresponds to the BTD of Fig. 1. The event chain from event (and including) events E3 to E4 and the barriers
between the two are common to both BTDs.

B. Safety Architectures in AdvoCATE
Our tool, AdvoCATE, is an Eclipse RCP application that

leverages a variety of models to support the construction
of safety cases. All our models are specified using Eclipse
Modeling Framework (EMF) [19] and we use Sirius6 to create
our graphical representations. This section presents the EMF
model, derived from our formal definition, that underpins our
tool and the functionality that it provides

Fig. 5a shows a fragment of the model that represents
the safety signature.As mentioned earlier, an SA consists
of collections of events, barriers, and controls—the safety
signature—and a collection of hazards. These have unique
names, along with a description that is presented to the user
in the BTDs (e.g., see Fig. 1). Controls belong to a barrier,
contain a list of allocations, and have an integrity (taking a
value between 0 to 1, and which is related to the likelihood
of a dangerous breach of a control).

Allocations, such as Mission Manager, or Pilot in Command
represent the person or system responsible for ensuring the
integrity of that control. Note that while the theory assures
that each control is allocated to a barrier, our model is
more ‘relaxed’, which enables us to model partial SAs. Each
hazard is allocated a CES—the graph structure from which
our BTDs are derived—and an associated argument, which is
the main connection between BTDs and the other features of
AdvoCATE, detailed in [10].

As shown in Fig. 5b, a CES is a directed acyclic graph
(DAG), modeled using a list of nodes and a list of links with
to and from references giving the source and target of each
link. We enforce the DAG structure using validations.

Nodes in the CES are instances of the events and controls
defined in the signature, connected by the event and control
references respectively. Thus, individual events and controls
can be reused in different CESs. In fact, as seen, controls can
be reused within the same CES.

We allow barrier instances to be defined within a CES,
which gives us the flexibility to create logical sub-groupings

6URL: https://eclipse.org/sirius/

of controls within the same barrier and CES. We do not
distinguish between top, threat, and consequence events, or
between prevention and recovery controls in a CES: those
properties emerge we focus on a particular event as a top event.

Event instances also store severity and likelihood informa-
tion for the risk assessment. Our SA model facilitates risk
assessment by defining residual severity, likelihood, and risk
as operations, which derive their values from those of the
proceeding elements. The current implementation uses the
inclusion-exclusion principle over all of the threat events for a
given event. For global threats, i.e., root events in the CES, the
calculations for residual levels simply use the initial values.

IV. SAFETY ARCHITECTING IN ADVOCATE

The progression of model-driven development (MDD) func-
tionality that we will describe in this section can be thought of
as an outline of a tool-supported methodology for BTDs, that
addresses a number of the practical challenges we identified
earlier (Section II-C). First, we discuss how we create safety
signatures. Those, in turn, support the creation of BTDs. Then,
we define a number of transformations to automate common
SA-wide changes, e.g., during development iterations. These
are accompanied with validations that ensure consistency.
Finally, we specify and illustrate a selection of useful views
of a SA, intended to provide stakeholder-specific information.

A. Implementation background

Our implementation of BTDs in AdvoCATE can be thought
as providing a suite of graphical editors, realized using the
Sirius framework, and associated functions that visualize and
modify the underlying EMF model. One of the most com-
pelling reasons for using Sirius is the abstraction that it enables
between the domain model (i.e., SAs) and any graphical
renderings we create. In Sirius, defining a graphical editor can
be considered a two-step process: giving mappings from the
domain model into a view specification and giving a graphical
rendering to elements in this view specification. Validations
and transformations are defined (respectively) as predicates

6

SafetyArchitecture

name : EString

Hazard

 CES : CES

 associatedArgument : Argument

Control

integrity : EFloat = 1

allocations : Allocation

Event

GlobalElement

description : EString

Identifiable

name : EString

Barrier

[0..*] events
[0..*] hazards [0..*] controls

[0..*] barriers

[0..*] barrierControl

[0..1] controlBarrier

(a) Safety architecture and safety signature

Hazard

 associatedArgument : Argument

CES

CESElement

escalation : EBoolean = false

associatedArgument : Argument

EventInstance

initialSeverity : Severity = Minimal

residualSeverity : Severity = Minimal

initialLikelihoodValue : EFloat = 1

threats() : EventInstance

consequences() : EventInstance

initialLikelihood() : Likelihood

residualLikelihood() : Likelihood

initialRiskLevel() : RiskLevel

residualRiskLevel() : RiskLevel

 event : Event

ControlInstance

controllingEvents() : EventInstance

occurredEvents() : EventInstance

 control : Control

CESLink

BarrierInstance

integrity : EFloat = 1

barrier : Barrier

[1..1] CES

[0..*] elements

[0..*] links

[0..*] barrierInstances[0..1] from

[0..*] outgoingLinks

[0..*] controls

[0..1] barrier

[0..1] to

[0..*] incomingLinks

(b) Controlled event structure

Fig. 5. EMF model for safety architectures.

and functions that operate on an element of the (underlying)
model, and seamlessly integrated into the Sirius editors.

In the rest of this section, we formalize an abstract definition
of (a subset of) the view mechanism in Sirius and provide an
analogous formal definition of SA transformations.

1) Views: As described above, a view is defined by a
mapping from the domain model to a view specification:

Definition 1 (View Specification). A view specification is a
tuple hN ,L, s, t, qi where N is a set of node types, L is a
set of link types, and s, t : L ! P(N) gives link sources and
targets, respectively. The map q : N [L ! Q takes node
types to queries.

This simplified definition omits hierarchical features of
views (implemented using containers). Moreover, we abstract
away from implementation details, such as data associated

with nodes, and the syntax of the query language7. For now,
we simply assume that we have a family of queries (one for
each node and link type, written q

x

, where x 2 N [L), and
that a query is given by a function that takes a node of that
type in a given a safety architecture, and returns a set of nodes
satisfying the query. The mapping between domain model and
view specification is provided by the queries, and execution
of a query upon a root object constructs a view.

Definition 2 (View). Given a view specification, S =
hN ,L, s, t, qi, and a node r, drawn from the safety architec-
ture, which we call the root element, the ‘S-view of r’ is a
graph hV,!, t

n

, t
l

i, where t

n

: N ! N gives node types,
and t

l

: (!) ! L gives link types, such that:
a) v1 ! v2, t

n

(v1) = N1, t
n

(v2) = N2, t
l

((v1, v2)) = L,
then N1 2 s(L) and N2 2 t(L); that is, the node types
match the specification

b) if v 2 V and t

n

(V) = N then v 2 q
N

(r). That is, if n has
type N then it is in the results of the query for that node
type applied to the root element.

c) furthermore, if v1 ! v2, and t

l

((v1, v2)) = L, then v2 2
q
L

(v1). Note that the link queries are given in the context
of the source, and find a list of targets, each of which has
a separate link.

In short, views are given as separately defined graphs (with
one for every instance of a root element type), whose nodes
and links are defined and populated by the contents of the SA.

2) Validations and Transformations: A validation checks
a given property of the model. In Sirius, this is defined as
a predicate on a model element. If the predicate is true, a
validation marker can be added to the realizations of those
elements in any views in which they appear. In AdvoCATE,
we also offer transformations that can be applied by the
user to make a meaningful domain change to the model. We
first give an abstract definition of what we consider a SA
transformation, which can be used to prove that application
of the transformation on a SA will result in a well-formed
transformed SA.

Definition 3 (Safety Architecture Transformation). A SA
transformation, ⌧ , from a SA (including its signature) S1 =
(⌃1, hH1, lh, ces1i) to another SA S2 = (⌃2, hH1, lh, ces2i)
is given by mappings: ⌧

c

: C1 ! P(C2), ⌧e : E1 ! P(E2),
⌧
b

: B1 ! P(B2), and ⌧
h

: hH1, lh1 , ces1i ! hH2, lh2 , ces2i,
such that:

• if c 2 b and ⌧(c) 2 b0 then b0 2 ⌧(b)
• if n1 ! n0

1 then 8n2 2 ⌧(n1). 9n0
2 2 ⌧(n0

1). n2 !⇤
2 n0

2.

B. Signature Generation
Building BTDs requires connecting events, controls, and

barriers from the signature, but creating the signature itself
is also supported in AdvoCATE. In fact, we provide two
mechanisms for expanding signatures: in situ, while creating
BTDs, and separately using a suite of table editors, which
enables compact visualization and bulk editing of controls.

7Acceleo Query Language: https://eclipse.org/acceleo/documentation/

7

TABLE I. BTD view specification

Node Types
Link Types haz threatC conseqC topE threatE conseqE

hazardL t s
threatL s, t t s
conseqL s, t s t

TABLE II. Barrier-centric slice view specification

Nodes
Links BSThreat BSConseq BSControls
threatL s t
conL t s

Each table editor is defined by a query that, in turn, defines
the rows of the table (e.g., our controls table editor uses
the controls containment reference for the list of controls).
The columns of each table are defined by queries on the
class represented by each row (Control in our case). While
these can be arbitrary queries, all of our columns simply
project the appropriate fields (and references) in the class:
name, description, integrity, and associated barrier. The editor
automatically populates references with possible values. Thus,
the barrier can be chosen from a dropdown list.

C. BTD Construction

The CES provides a high-level overview of the underlying
model, ensuring consistency of each BTD but the primary
means of development remains at the level of individual BTDs.
AdvoCATE provides a graphical editor for their construction,
defined as a view of the CES and whose specification is given
according to Definition 1.

For convenience, we present the node and link types for our
BTD view specification and their source and target functions
in a tabular format (Table I). An s or t in a given cell states
that the node type is in the source or target set for that link
type. For example, the threatL row states that s(threatL) =

{threatC , threatE} and t(threatL) = {threatC , topE}.
Intuitively, the hazardL link connects the hazard to the

top event, while threatL links connect threat events and their
controls to the top event,and conseqL links connect the top
event to the chain of consequences. The queries that populate
a view are applied to an EventInstance root element. A subset
are given, using the query syntax that traverses our model, as
given in Fig. 5a and Fig. 5b:
– q

haz

(r) = r .eContainer().eContainer(), where the expres-
sion eContainer() is the EMF method for following the
class hierarchy and the ‘.’ separator allows chains of calls
to reference or fields. That is, given an event instance (r),
we navigate to the grandparent class: the desired hazard.

– q

topE

(r) = r, as the top event is the root of the diagram.
– q

threatE

(r) = r .threats(), uses the threats operation (given
in the EventInstance class in Fig. 5b), recursively following
CESLinks to find the first preceding events.

– q

threatL

(s) = s.outgoingLinks.to, which gets the to node of
all outgoing threats.
Fig. 3 is the BTD view (complying with Definition 2)

generated by using event E3 (i.e., airborne intrusion) as the

root of each query. In addition to the presentation of BTDs,
AdvoCATE provides a fully-functional editor to add or remove
events and controls. These operations update both the CES and
the view.

D. Transformations
The incremental nature of BTD development can require de-

cisions that can affect the overall SA. Similar to programming
language refactoring [20], these changes can be both tedious
and difficult to achieve correctly, when manually undertaken.
AdvoCATE provides transformations that enable such global
changes to a SA to be automated. We now describe two
transformations that we have found useful.

1) Barrier Splitting and Merging: Occasionally, allocating
controls to barriers requires a change in granularity. This
can necessitate combining some controls into a single barrier
or splitting a combination of controls. For example, in an
earlier iteration of the BTD of Fig. 3, the controls related
to the emergency procedures barrier were split across separate
barriers pertaining to ATC notification, and broadcasting on
CTAF. As is evident in the figure, they are now part of the
same barrier. Formally, we give this as a transformation ⌧
(with parameters, b1 and b2, giving barriers to merge) such
that ⌧

e

and ⌧
c

are identity transformations, and

⌧
b

(b) =

⇢
b
new

b = b1 _ b2
b otherwise

and if bar(c) 2 {b1, b2} then ⌧(bar)(⌧
c

(c)) = b
new

. Further-
more, the transformation will also modify the CES such that
⌧
ces

(hN,!, l, esci) = hN,!, l0, esci where l0
t

(n) = b
new

whenever l
t

(n) 2 {b1, b2}, otherwise it is identical.
AdvoCATE provides functionality that can also split a

pre-existing barrier into two separate barriers, by giving a
partitioning of controls, using a dialog box populated by the
choice of barrier to split. Due to space constraints, we omit the
formalization of this transformation and present the result of
this transformation in Fig. 3. Specifically, the result of a barrier
split can be seen in the two prevention barriers identified as
ground-based surveillance on the event chain between the
threat E8 and the top event E3. Although they are labeled
with the same description (since, at an abstract level, they both
comprise ground-based surveillance), the control in the first
barrier concerns surveillance conducted by a visual observer,
as distinct and independent from the control in the second
barrier, i.e., surveillance conducted using a radar system.

2) Event split: AdvoCATE also offers similar functionality
for splitting events. Here, we allocate the threat and conse-
quence paths to one, the other, or both of the resultant events.
There are two possibilities for event splitting in AdvoCATE:
a) sequential splitting, where the newly split event follows
the original event in the event chain; and b) parallel splitting,
where the two events are not connected. Note that in parallel
splitting, we can also connect an event to a different hazard
than the one from which it was originally split. Conceptually,
this corresponds to a different form of increasing granularity
of an SA. Again, due to space constraints, we omit the

8

Fig. 6. One of the two BTDs resulting from the sequential split transformation
applied to the top event E4 of the BTD in Fig. 1. A validation warning informs
the user that there are missing controls between the events newly created after
the transformation.

formalization of event splitting and present a domain-specific
discussion of the results.

For instance, we can split the event E4 in Fig. 1, concerning
a loss of safe separation into two sequential events, namely, a
loss of well-clear separation (E41), and a near midair collision
(NMAC) (E42). Fig. 6 represents one of the BTDs resulting
from the transformation, where the original consequence (E7)
is retained, but is now a consequence of the new event E42. In
the other resulting BTD (not shown), the event E41 is now the
top event, and retains the original threats E1 and E3 of Fig. 1.
The reason for this kind of transformation here corresponds
to two different time thresholds where we can provide finer
grained reaction to recover before a MAC occurs.

Indeed, if an automated collision avoidance system were
available onboard the UA, it would rely on an alert of a loss
of well-clear separation before engaging a collision avoidance
maneuver. That this suite of controls (i.e., detection and
recovery) has not been modeled is caught by the validation
check that AdvoCATE performs—to detect event chains not
having at least one barrier/control—and is highlighted on the
BTD, as shown in Fig. 6.

Similarly, an example of a parallel split, in short, concerns
the consequence event E7 of Fig. 1. In particular, this is a
generic consequence but, in reality, it refers to a MAC event
occurring within the OR. Since it is possible for a MAC event
to occur in the situation where the UA exits the OR and then
collides with external air traffic, it can be useful (and more
accurate) to apply a parallel event split transformation to event
E7, and associate the new event (and BTD) with the hazard
H2.

E. Validations
Subtle problems with a safety system can be difficult to

determine by manual inspection. In AdvoCATE, we have
implemented a number of validations that inform the user
when there are potential issues with the current state of the SA.
Many of these check basic properties, such as the existence
of controls between two events, as seen in Fig. 6, where the
transformation resulted in a BTD that violates this condition.
We briefly motivate two useful validations:

a) A key principle governing barrier/control usage is loose
coupling and minimizing barrier interdependence to achieve

Fig. 7. Barrier-centric slice view for the Ground-based Surveillance barrier,
being used in the safety architecture of the running example, as illustrated by
the BTDs of Figs. 2 and 3

.

Fig. 8. Event slice view constructed across the safety architecture containing
the BTDs of Figs. 2 and 3.

risk reduction through diversity. This is violated when we
repeat controls on a path, e.g., using the same control for
prevention of a specific top event, as well as for recovery after
that top event occurs. AdvoCATE warns against this repetition,
by annotating the offending controls on the diagram.

b) In incrementally building up the safety architecture,
paths can emerge that bypass or short circuit controls or bar-
riers [21]. That is, when some controls/barriers on a path are
breached, subsequent uses of the (different) controls belonging
to the same barrier (on that path) are ineffective. In this case,
AdvoCATE annotates the offending path.

F. Views Supporting Comprehension
A useful consequence of creating a SA using our implemen-

tation in AdvoCATE, is the ability to automatically generate
and update views, three of which we now describe, and that
we believe have practical utility.

1) Barrier-centric Slice View: This view presents the con-
trols associated with a given barrier alongside the threats and
consequences that they mitigate. It can be considered as a
high-level specification of the functionality to be delivered by
a given barrier, and is relevant for those stakeholders who
are responsible for (implementing or executing) the particular
barrier and its respective controls.

Fig. 7 gives an example, as applied to the ground-
based surveillance barrier, across the SA for the run-
ning example. As shown, it presents the different threats

9

that the barrier will manage, and the consequences that
can occur upon barrier breach. Table II gives the ba-
sic view specification, which is populated with the re-
sults of the following AQL queries, using a Barrier

as the query root: i) q

BSControls

(r) = r .barrierControls,
which simply returns the controls within this barrier;
ii) q

BSThreat

(r) = r .barrierInstances.controlInstances.contro -
llingEvents().event .asSet(), which navigates the model to call
the controllingEvents operation on every control instance in the
barrier; and iii) q

threatL

(s) = s.consequenceControls().control .
2) Event-slice view: The event-slice view presents all the

hazards pertinent to a given system event, e.g., where there is
a hazard release, along with all the threats and consequences
of that event within the relevant situation. This view can be
useful during the development and assessment of the overall
risk analysis in focusing on a specific, high-priority/criticality
event that occurs within different operating situations. The
basic view specification for the event-slice (not shown) is
similar to that of the barrier-centric slice of Table II. We omit
the queries for this view, which are similar to the queries for
the barrier slice view. Fig. 8 gives an example of an event-
slice view as applied to the event E3 across the SA for the
running example. As mentioned, this allows us to focus on a
top event that is not localized to a given hazard, and provides
the context of the event across the overarching collection of
hazardous scenarios.

3) Crew Allocation View: The crew allocation view is a
tabular presentation of the barriers that are allocated to specific
crew members, serving to provide a direct mapping from crew
roles to the specific responsibilities they will discharge. This
type of view is operationally useful and the allocation from
barriers (and the underlying controls) can help derive standard
operating procedures, checklists of tasks, etc. The SA model
enables controls to be annotated with specific roles (see Sec-
tion III-B) and AdvoCATE provides the crew allocation view
to enable those stakeholders to view the pertinent information.
We provide a tabular representation (not given here), which
summarizes the barriers that each mission role is allocated for
mitigating each threat.

V. CONCLUDING REMARKS

In this paper, we described our framework for model-driven
development of bow tie diagrams (BTDs), which we have
leveraged to support the creation of a safety case required for
regulatory approval to conduct pioneering NASA flight opera-
tions, involving a fleet of sUAS flying BVLOS. Specifically,
we have developed an SA model that aggregates a collection of
inter-related BTDs, providing a basis both for risk assessment,
and for elaborating parts of the required safety justification.
Our approach was motivated through practical challenges that
arose during safety case development, including maintaining
consistency amongst diverse safety artifacts, making principled
changes to a safety architecture, and presenting the safety
justification to the relevant stakeholders in such a way as to
facilitate safety related decision making.

Indeed, the range of formal views and the supporting risk
analysis were instrumental in successfully obtaining approval
to fly. The BTDs of Figs. 1–3 are, in fact, abbreviated frag-
ments drawn from much larger, more comprehensive BTDs
which we created in the safety case corresponding to the real
mission on which the running example has been based. In
creating those BTDs, AdvoCATE automatically assembles the
underlying SA transparently, maintaining consistency between
the associated elements. Besides the views described in this
paper, another view that we leveraged is the barrier-centric
view [5], that abstracts the details of the controls and only
presents the different barriers applicable for risk management
in a specific scenario. This view was particularly useful in con-
cisely communicating the risk reduction measures that were
undertaken, thus providing assurance of operational safety in
the presence of new surveillance and avoidance capabilities.
That view also provided the basis for a rapid risk assessment.

In brief, the risk assessment involved computing the like-
lihood of occurrence of the top events and consequence
events, from the initial probabilities of occurrence of the
identified threats and the integrities of the barriers used. In
general, the probability that an event occurs is computed using
the inclusion-exclusion principle, from the probability of the
disjunction over all paths leading to that event. That, in turn,
relies on the computation of path probabilities which, for a
path, is determined as the joint probability that all the events
on that path (including barrier breaches) occur.

The approach and models described here represent only
a first step towards our wider plans for a fully integrated
approach to safety that will incorporate other components of
safety cases [22]. For example, we have implemented navi-
gation between elements of the safety architecture and safety
arguments [4] that provide rationale and evidence for using
specific barriers within the safety architecture, assumptions
made in the risk analysis, properties of the overall SA as well
as its constituent elements, e.g., sufficiency of the SA to cover
the relevant threats, fitness of purpose of the barriers, etc.

As well as developing models to address other facets of the
safety framework, we plan to implement functionality for the
generation of other artifacts, such as crew checklists and task
plans—an important, and potentially complex, element of an
implemented safety system. AdvoCATE currently implements
the pre-defined views we have described here, but we plan to
develop a domain-specific query language to allow domain
experts to define and customize views according to their
needs.Furthermore, to ensure scalability, we plan to investigate
incremental generation of views and running of validations.

We also see significant potential to support mission design,
for example, by extending the tool’s capabilities with features
for impact and sensitivity analysis of a proposed safety system,
possibly through temporal extensions [23]. Lastly, though our
emphasis in this work has been on modeling safety systems,
model-based techniques have traditionally been applied to the
development and analysis of target systems [24], themselves,
and we plan to investigate how our work can best be aligned
with NASA’s initiative in this area [25].

10

REFERENCES

[1] US Department of Transportation, Federal Aviation Administration
(FAA), “Flight Standards Information Management System, Volume 16,
Unmanned Aircraft Systems,” Order 8900.1, Jun. 2014.

[2] FAA Air Traffic Organization, Safety and Technical Training Service
Unit, “Transforming Risk Management: Understanding the Challenges
of Safety Risk Measurement,” https://go.usa.gov/xXxea, Dec. 2016.

[3] R. A. Clothier, B. P. Williams, and N. L. Fulton, “Structuring the
safety case for unmanned aircraft system operations in non-segregated
airspace,” Safety Science, vol. 79, pp. 213 – 228, 2015.

[4] E. Denney and G. Pai, “Architecting a Safety Case for UAS Flight
Operations,” in 34th International System Safety Conference (ISSC),
Aug. 2016.

[5] E. Denney, G. Pai, and I. Whiteside, “Modeling the Safety Architecture
of UAS Flight Operations,” in Proceedings of the 36th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP
2017), in Lecture Notes in Computer Science (LNCS), S. Tonetta,
E. Schoitsch, and F. Bitsch, Eds. Springer, Sep. 2017 (to appear).

[6] E. Denney and G. Pai, “Safety considerations for UAS ground-based
detect and avoid,” in Proceedings of the 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC 2016), 2016, pp. 1–10.

[7] E. Denney and G. Pai, “Argument-based airworthiness assurance of
small UAS,” in Proceedings of the 34th IEEE/AIAA Digital Avionics
Systems Conference (DASC), Sep. 2015, pp. 5E4–1–5E4–17.

[8] R. Berthold, E. Denney, M. Fladeland, G. Pai, B. Storms, and
M. Sumich, “Assuring ground-based detect and avoid for UAS opera-
tions,” in Proceedings of the 33rd IEEE/AIAA Digital Avionics Systems
Conference (DASC), Oct. 2014, pp. 6A1–1–6A1–16.

[9] T. Prevot, J. Rios, P. Kopardekar, J. Robinson III, M. Johnson, and
J. Jung, “UAS Traffic Management (UTM) Concept of Operations to
Safely Enable Low Altitude Flight Operations,” in Proceedings of 16th
AIAA Aviation Technology, Integration, and Operations Conference, no.
AIAA-2016-3292, Jun. 2016.

[10] E. Denney and G. Pai, “Tool support for assurance case development,”
Automated Software Engineering, 2017, to appear.

[11] FAA Air Traffic Organization, Safety Management System Manual
version 4.0, Federal Aviation Administration, May 2014.

[12] C. Haddon-Cave, “The Nimrod Review: An independent review into the
broader issues surrounding the loss of the RAF Nimrod MR2 Aircraft
XV230 in Afghanistan in 2006,” Report, The Stationery Office, London,
UK, Oct. 2009.

[13] Adelard LLP. (2017). Assurance and Safety Case Environment (ASCE)
Software [Online]. Available: http://www.adelard.com/asce

[14] CGE Risk Management Solutions. (2017). BowTieXP Software [Online].
Available: http://www.cgerisk.com/

[15] BowTie Pro. (2017). BowTie Pro Software [Online]. Available: http:
//www.bowtiepro.com/

[16] Meercat Pty Ltd. (2017). Meercat RiskView Software [Online]. Available:
http://www.meercat.com.au/

[17] ABS Group. (2017). THESIS BowTie Software [Online]. Available: http:
//www.abs-group.com/,

[18] Nicestsolution. (2017). SafetyBarrierManager Software [Online]. Avail-
able: http://safetybarriermanager.com/

[19] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[20] Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[21] N. J. Duijm, “Safety-barrier diagrams as a safety management tool,”
Reliability Engineering and System Safety, vol. 94, no. 2, pp. 332–341,
Feb. 2009.

[22] E. Denney and G. Pai, “Automating the Assembly of Aviation Safety
Cases,” IEEE Transactions on Reliability, vol. 63, no. 4, pp. 830–849,
2014.

[23] D. L. Mathias, S. Go, K. Gee, and S. Lawrence, “Simulation assisted risk
assessment applied to launch vehicle conceptual design,” in Reliability
and Maintainability Symposium. IEEE, 2008.

[24] M. Güdemann and F. Ortmeier, “A framework for qualitative and
quantitative formal model-based safety analysis,” in 12th IEEE High
Assurance Systems Engineering Symposium, HASE, 2010, pp. 132–141.

[25] J. Evans, S. Cornford, and M. S. Feather, “Model based mission
assurance MBMA: NASA’s assurance future,” in Annual Reliability and
Maintainability Symposium (RAMS 2016). IEEE, 2016, pp. 1–7.

11

